
NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

INFORMATION SECURITY CONSIDERATIONS FOR
APPLICATIONS USING APACHE ACCUMULO

by

Brandon H. Pontius

September 2014

Thesis Advisor: Mark Gondree
Second Reader: Garrett McGrath

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704–0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202–4302, and
to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE

09-26-2014
3. REPORT TYPE AND DATES COVERED

Master’s Thesis 08-27-2012 to 09-26-2014
4. TITLE AND SUBTITLE

INFORMATION SECURITY CONSIDERATIONS FOR APPLICATIONS USING
APACHE ACCUMULO

5. FUNDING NUMBERS

6. AUTHOR(S)

Brandon H. Pontius

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943

8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

N/A

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this document are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government. IRB Protocol Number: N/A.

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited
12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

NoSQL databases are gaining popularity due to their ability to store and process large heterogeneous data sets more efficiently than
relational databases. Apache Accumulo is a NoSQL database that introduced a unique information security feature—cell-level access
control. We study Accumulo to examine its cell-level access control policy enforcement mechanism. We survey existing Accumulo
applications, focusing on Koverse as a case study to model the interaction between Accumulo and a client application. We conclude
with a discussion of potential security concerns for Accumulo applications. We argue that Accumulo’s cell-level access control can
assist developers in creating a stronger information security policy, but Accumulo cannot provide security—particularly enforcement
of information flow policies—on its own. Furthermore, popular patterns for interaction between Accumulo and its clients require
diligence on the part of developers, which may otherwise lead to unexpected behavior that undermines system policy. We highlight
some undesirable but reasonable confusions stemming from the semantic gap between cell-level and table-level policies, and between
policies for end-users and Accumulo clients.

14. SUBJECT TERMS

big data, NoSQL, databases, information security, Accumulo, cell-level security
15. NUMBER OF

PAGES 85
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2–89)

Prescribed by ANSI Std. 239–18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release; distribution is unlimited

INFORMATION SECURITY CONSIDERATIONS FOR APPLICATIONS USING
APACHE ACCUMULO

Brandon H. Pontius
Lieutenant, United States Navy

B.S., Louisiana State University, 2005
M.B.A., Louisiana State University, 2012

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 2014

Author: Brandon H. Pontius

Approved by: Mark Gondree, Ph.D.
Thesis Advisor

Garrett McGrath
Second Reader

Peter Denning, Ph.D.
Chair, Department of Computer Science

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

NoSQL databases are gaining popularity due to their ability to store and process large het-
erogeneous data sets more efficiently than relational databases. Apache Accumulo is a
NoSQL database that introduced a unique information security feature—cell-level access
control. We study Accumulo to examine its cell-level access control policy enforcement
mechanism. We survey existing Accumulo applications, focusing on Koverse as a case
study to model the interaction between Accumulo and a client application. We conclude
with a discussion of potential security concerns for Accumulo applications. We argue that
Accumulo’s cell-level access control can assist developers in creating a stronger informa-
tion security policy, but Accumulo cannot provide security—particularly enforcement of
information flow policies—on its own. Furthermore, popular patterns for interaction be-
tween Accumulo and its clients require diligence on the part of developers, which may
otherwise lead to unexpected behavior that undermines system policy. We highlight some
undesirable but reasonable confusions stemming from the semantic gap between cell-level
and table-level policies, and between policies for end-users and Accumulo clients.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

Table of Contents

1 Introduction 1
1.1 Big Data in the Military. 1

1.2 Contributions . 3

1.3 Thesis Organization . 3

2 Background 5
2.1 NoSQL Ecosystem . 5

2.2 NoSQL Security . 8

2.3 Naval Tactical Cloud . 10

3 Accumulo Overview 13
3.1 Data Model . 13

3.2 System Architecture . 15

4 Accumulo Cell-Level Policy Enforcement 19
4.1 Column Visibility . 19

4.2 Authorizations . 22

5 Accumulo Client Applications 31
5.1 Key Accumulo Client Interfaces 31

5.2 Multi-User Client Applications 32

5.3 Accumulo Client Examples . 33

6 Accumulo Client Case Study 37
6.1 Architecture . 37

6.2 Data Model . 38

6.3 User and Group Management 39

6.4 Queries . 40

6.5 Tokens . 42

vii

7 Information Security Discussion 43
7.1 User and Privilege Management 43

7.2 NoSQL Injection . 47

7.3 Information Security Policy Enforcement 48

8 Conclusion and Future Work 51
8.1 Conclusions . 51

8.2 Future Work . 52

Appendix: Accumulo Installation 55

List of References 61

Initial Distribution List 67

viii

List of Figures

Figure 2.1 Trends in NoSQL database popularity, from [19]. 8

Figure 3.1 Accumulo key-value relationship 13

Figure 3.2 Accumulo key hierarchy . 15

Figure 3.3 Accumulo architecture . 18

Figure 4.1 ColumnVisibility expression syntax as a context free grammar . . 21

Figure 4.2 Example ColumnVisibility parse tree 22

Figure 4.3 Client side Authorizations flow 24

Figure 4.4 Server side Authorizations flow 26

Figure 4.5 Pseudocode for evaluate() algorithm 29

Figure 5.1 Accumulo client code example 32

Figure 5.2 Examples of Accumulo client structure 34

Figure 6.1 Koverse application architecture 38

Figure 6.2 Koverse Search application query examples, from [41]. 41

Figure 6.3 Koverse JSON query examples, after [41]. 41

Figure 7.1 HRapp example application. 45

ix

THIS PAGE INTENTIONALLY LEFT BLANK

x

List of Tables

Table 2.1 Popularity of NoSQL databases, as reported by DB-Engines August
2014 rankings, after [19]. 7

Table 4.1 Examples of valid and invalid ColumnVisibilities 20

Table 6.1 Mapping a Koverse Record to an Accumulo entry 39

Table 7.1 Summary of NoSQL stores and documented query language vulner-
abilities. 48

xi

THIS PAGE INTENTIONALLY LEFT BLANK

xii

List of Acronyms and Abbreviations

API Application Programming Interface

ACID Atomicity Consistency Isolation Durability

BASE Basically Available Soft-state Eventually Consistent

DAC Discretionary Access Control

DARPA Defense Advanced Research Projects Agency

DOD Department of Defense

HDFS Hadoop Distributed File System

INSCOM United States Army Intelligence and Security Command

JPA Java Persistence API

JSON JavaScript Object Notation

MAC Mandatory Access Control

MUSE Mining and Understanding Software Enclaves

NoSQL Not Only SQL

NSA National Security Agency

NTC Naval Tactical Cloud

ONR Office of Naval Research

SQL Structured Query Language

TCSEC Trusted Computer System Evaluation Criteria

UCD Unified Cloud Data

xiii

THIS PAGE INTENTIONALLY LEFT BLANK

xiv

Acknowledgments

I want to thank my thesis advisor, Dr. Mark Gondree, for his guidance. He always provided
just the direction I needed to keep me on track and focused during research and writing.

I also want to thank Garrett McGrath for taking the time to be my second reader and making
sure my writing made sense.

Finally, and most importantly, I want to thank my wife. Anne, you have always supported
me in anything I do, and I would not have been able to complete this program without you.
You are an incredible mother to our children, and throughout our time in Monterey, you
have gone above and beyond to make sure everything at home is taken care of so I could
have time to complete all of my academic requirements. I love you, and I am grateful every
day for the life we have been blessed with.

To my children: You will probably never read this. But if you do, know that I love you, and
you bring joy to my life every day.

xv

THIS PAGE INTENTIONALLY LEFT BLANK

xvi

CHAPTER 1:
Introduction

For decades, relational databases have been the preferred method for readily retrievable
data storage. As data sets have become larger and less structured, inefficiencies have
emerged with relational databases [1]. The desire to solve these problems led to the devel-
opment of Not Only SQL (NoSQL) databases. Their popularity has grown rapidly during
the last ten years, and NoSQL databases are now used by several large companies, such as
Google, Facebook, Twitter, LinkedIn, Amazon and others, to manage large data sets.

Accumulo is a NoSQL database developed by the government primarily to store and pro-
cess large amounts of intelligence data [2]. The Accumulo project was an early developer
of cell-level access control for NoSQL databases. Recently, other NoSQL projects such as
HBase have followed suit. Cell-level access control is designed to allow secure access to
data sets of mixed sensitivity levels. This work attempts to describe the technical aspects
of Accumulo’s cell-level access control policy enforcement and comment more generally
on Accumulo’s role in maintaining data security in production applications.

1.1 Big Data in the Military
The amount of data human beings generate and consume is increasing exponentially in both
the commercial sector and in the Department of Defense (DOD). In 2012, it was estimated
that seven million computing devices were being used in the military to process a 1,600
percent increase in data since September 2011 [3]. Currently, there are between two and
five terabytes of data stored for each member of the armed services [4]. Generation of large
amounts of data does not necessarily translate to good intelligence as analysts can become
overwhelmed by the volume of data. An analyst attempting to glean intelligence from
modern data streams has been compared to a person trying to quench his thirst with a fire
hose. [3]. Attempting to process so much data creates an “operational thrashing” problem
in which analysts spend more time organizing and preprocessing data than creating action-
able intelligence [5]. To understand the amount of data a typical analyst may have to sift
through, consider sitting down at a computer and looking through hundreds of thousands of
spreadsheets each with hundreds of columns and tens of thousands of rows [6]. In a 2012

1

Forbes article, Lt. Gen. Michael Oates, head of the Joint Improvised Explosive Device
Organization, commented, “There is no shortage of data. There is a dearth of analysis” [3].

Generation of actionable intelligence from large data sets requires efficient analysis. Man-
ual analysis of large data sets to develop these insights is unsustainably resource intensive.
In January 2014, the deputy director of the Defense Intelligence Agency noted, “We’re
looking for needles within haystacks while trying to define what the needle is, in an era
of declining resources and increasing threats” [7]. Big data platforms have the storage
and analytical capabilities necessary to handle large data sets. These solutions can relieve
the processing burden on human analysts and allow them to spend more time generating
real intelligence [5]. Big data analytics make information more usable, improve decision
making, and lead to more focused missions and services. For instance, geographically
separated teams can access a real-time common operating picture, diagnostic data mining
can support proactive maintenance programs that prevent battlefield failures, and data can
be transformed into a common structure that allows custom queries by a distributed force
composed of many communities [4], [6].

Despite the constrained budgetary environment, the DOD continues to invest in big data.
The DOD spends $250 million a year on big data initiatives, according to MilitaryTimes,
and the FY2015 budget establishes big data investment among its science and technology
priorities [7]. Several DOD agencies are funding big data programs. For example, the De-
fense Advanced Research Projects Agency (DARPA) MUSE program seeks to improve the
software engineering process by mining a large corpus of software to find useful properties,
behaviors, and vulnerabilities and leverage that information to increase software reliabil-
ity [8]. The XDATA program, also backed by DARPA, is developing new computational
methods and tools for processing big data sets [9]. The Office of Naval Research (ONR)
Naval Tactical Cloud (NTC) project seeks to improve intelligence distribution across dis-
parate forces using cloud technologies [10].

As the DOD develops technologies to analyze and distribute information more efficiently,
data security becomes more of a concern. Data flowing through mobile devices and across
land, sea, and air battle spaces creates more opportunities for adversaries to intercept or
manipulate data [4]. Applications must be developed with these security concerns in mind.

2

1.2 Contributions
This thesis seeks to determine the role of Accumulo’s cell-level security in applications
requiring information security. Because Accumulo documentation does not provide a de-
tailed description of its operation, we use static analysis of Accumulo source code to de-
scribe Accumulo’s architecture and detail its cell-level access control policy enforcement.
We discuss the interfaces between Accumulo and client applications. Finally, we describe
potential security concerns for Accumulo based applications and argue that, while Accu-
mulo provides some assistance to developers in maintaining data security, a significant
portion of the overall security policy must be enforced at the client application level. We
believe our technical survey may assist future study in identifying and mitigating poten-
tial information security vulnerabilities in Accumulo or Accumulo based applications. Our
comments on potential concerns for configuration of Accumulo client and user interaction
motivate the need for a more thorough “best practice” guide.

1.3 Thesis Organization
In Chapter 2, we provide background on NoSQL and Accumulo. Chapter 3 describes Accu-
mulo’s data model and software and hardware architecture. In Chapter 4, we discuss the use
of Authorizations and ColumnVisibilities to enforce cell-level access control in Accumulo.
This discussion includes a walk-through of those critical portions of Accumulo code used
for policy enforcement. Chapter 5 provides a general overview of Accumulo client appli-
cations, and Chapter 6 provides a detailed discussion of Koverse as a case study. Chapter 7
is a discussion of potential security concerns for applications that integrate with Accumulo.
Finally, in Chapter 8 we present conclusions and topics for further study.

3

THIS PAGE INTENTIONALLY LEFT BLANK

4

CHAPTER 2:
Background

In this chapter, we provide an overview of the NoSQL ecosystem and NoSQL security
concerns as well as a description of Accumulo’s role in the NTC.

2.1 NoSQL Ecosystem
NoSQL databases are gaining popularity as developers seek to address problems with tra-
ditional relational databases. A 2012 Couchbase survey asked database system developers
what they considered to be the most critical problems with relational databases that in-
fluenced their decision to use NoSQL solutions. Of the survey respondents, 49 percent
identified rigid schemas as a significant problem, 39 percent said lack of scalability, and 29
percent said high latency [11]. NoSQL databases offer several benefits [12] over relational
databases, including:

Reduced complexity. The rich feature set and strict ACID properties of relational databases
may not be necessary for some data sets.

Higher throughput. Cassandra writes 2,500 times faster into a 50GB database than
MySQL [13]. BigTable can process 20 petabytes per day [14].

High degree of scalability on commodity hardware. NoSQL databases do not rely on
highly available hardware and are designed to handle failure efficiently. Data can
be partitioned across hardware more efficiently than relational database sharding.
Hardware nodes can be added and removed relatively easily.

More flexible data model. NoSQL databases are not restricted to the relational data
model which can be inefficient for unstructured data sets.

While NoSQL databases address some problems with the relational model, they also
present their own set of problems. Most notable is the weaker guarantees offered by NoSQL
databases compared to ACID systems. Brewer’s CAP theorem says that database systems

5

must balance consistency, availability, and partition tolerance and that strong forms of all
three properties cannot be achieved simultaneously [15], [16]. NoSQL databases gener-
ally sacrifice consistency for increased availability and partition tolerance. In contrast to
ACID properties provided by relational databases, many NoSQL systems claim to pro-
vide BASE properties—basically available, soft-state, eventually consistent [17]. Another
weakness of NoSQL databases is the lack of a common interface like Structured Query
Language (SQL). SQL simplifies and standardizes database manipulation in relational
databases. NoSQL databases each have a unique programming interface that uses a lower
level procedural language (e.g., Java) and requires more complex programming than SQL
to perform the same task [18].

Although NoSQL solutions are becoming a larger presence in the database community,
relational databases continue to be far more prevalent. Table 2.1 shows the ten most used
databases along with several other NoSQL databases for comparison, as reported by DB-
Engines. According to DB-Engines, the scores are standardized such that a database with
twice the score is twice as popular. MongoDB and Cassandra are the only two NoSQL
databases in the top ten and are much less popular than the top relational databases, but
NoSQL database use is increasing [19], as shown in Figure 2.1. The 2012 Couchbase study
claimed that 70 percent of large companies planned to fund NoSQL projects in 2012. Forty
percent of companies surveyed said that NoSQL technologies were important or critical to
daily operations, and an additional 37 percent said NoSQL was becoming important [11].

There are many types and implementations of NoSQL databases, but most share some
common features. The most obvious is that they do not conform to the relational data
model and are not heavily dependent on tables of data, or any other particular schema.
They also use a lower level procedural query interface rather than SQL. Finally, NoSQL
databases scale well horizontally by distributing data across a “nothing shared” network
of commodity hardware [17], [18]. NoSQL databases are designed to perform in a variety
of use cases including large volume data storage, large scale data processing, embedded
(machine-to-machine) information retrieval, and exploratory analytics [12].

6

Rank Database Score
1 Oracle 1470.86
2 MySQL 1281.22
3 Microsoft SQL Server 1242.50
4 PostgreSQL 249.85
5 MongoDB 237.36
6 DB2 206.42
7 Microsoft Access 139.62
8 SQLite 88.87
9 Sybase ASE 86.17

10 Cassandra 81.90

11 Redis 70.80
15 HBase 41.92
18 Memcached 30.99
21 CouchDB 24.13
30 Riak 11.67
54 Accumulo 2.62

Table 2.1: Popularity of NoSQL databases, as reported by DB-Engines August 2014 rankings,
after [19].

NoSQL databases are grouped in three categories. Key-value stores are the simplest of
the NoSQL implementations. They store data in maps, dictionaries, or hash tables [17]
and use basic put and get operations to write and read entries by key. The value is not
searchable. Key-value stores feature high scalability and efficient retrieval but lack complex
querying capability [12]. Examples of key-value stores are Dynamo, Voldemort, Redis,
Riak, and Memcached [12], [18]. Document stores add a level of complexity to simple key-
value stores. These NoSQL databases store documents [12], typically in a standard data
exchange format such as XML, JSON, or BSON [17]. Key-value pairs are encapsulated
in these schemaless documents. Both keys and values are searchable [17]. MongoDB and
CouchDB are the most common examples of document stores [18]. Column-oriented stores
are modeled after Google’s BigTable design. They store and process data by column and
the keys have multiple attributes. They often integrate with a distributed file system such as
Google File System or Hadoop Distributed File System and a data analytic framework such
as MapReduce [17]. Examples of column-oriented stores are BigTable, HBase, Hypertable,
Cassandra, and Accumulo [18].

7

MongoDB

Redis
Cassandra

HBase

Memcached
CouchDB

Riak

Accumulo

Figure 2.1: Trends in NoSQL database popularity, from [19].

Accumulo’s design is based on Google’s BigTable [20]. The data model and technology
dependencies are two major aspects of BigTable that carry into Accumulo. BigTable in-
troduced a multi-attribute key that identifies a row, column family, column qualifier, and
timestamp with each data entry. Entries are stored in Tables which are distributed across
commodity hardware by dividing them into subsets call Tablets. A Tablet Server process
runs on each BigTable node that manages a set of Tablets. BigTable uses a distributed file
system, Google File System, for persistent storage, integrates with the MapReduce analytic
framework, and uses a distributed service to manage concurrency and consistency of dis-
tributed nodes. All of these properties are also present in Accumulo and are discussed in
more detail in later chapters.

2.2 NoSQL Security
As the scale of information sharing grows, so does the problem of maintaining the security
of that information. The growing numbers of information users combined with more direct

8

access to data requires closer attention to security policies and their enforcement. The
wide use of web interfaces to applications with database backends illustrates this problem.
Users are given more access through these interfaces, which are frequent victims of cyber
attacks. Databases have an important role in maintaining the confidentiality, integrity, and
availability of data. A compromised database can lead to improper access to data, improper
modification of data, or loss of access to data. These problems affect not only the individual
that owns the compromised data, but entire organizations and communities [21].

Okman et al. investigated NoSQL security in more detail using Cassandra and MongoDB
[22]. They identified the following potential security weaknesses:

• No encryption mechanism for data
• Unencrypted communication with clients
• Usernames and passwords sent as clear text
• Option available to encrypt inter-node communication but not the default setting
• No protection during bulk data ingest
• Query languages potentially susceptible to injection attacks
• Denial of service by thread consumption
• Weak native authentication and authorization implementations
• No redundancy in password and permission files
• Permission files not verified during each request

The Cloud Security Alliance defines the most critical information security threats they
perceive for big data, grouping these into the following categories [23]:

1. Secure computations in distributed programming frameworks
2. Security best practices for non-relational databases
3. Privacy preserving data mining and analytics
4. Cryptographically enforced data centric security
5. Granular access control
6. Secure data storage and transaction logs
7. Granular audits
8. Data provenance
9. End point validation and filtering

9

10. Real-time security monitoring

Of these concerns, the most relevant to our discussion of Accumulo are:

Security best practices for non-relational data stores
NoSQL databases have been designed with performance in mind and with few built
in security features. Much of the NoSQL community relies on middleware to enforce
security policy. Each NoSQL solution has a unique interface, so developers face the
challenge of verifying the correctness of middleware security protocols and ensuring
proper integration with a specific NoSQL database.

Granular access control
Big data, in an operational or intelligence context, originates from a variety of sources
and sensitivity levels. Coarse access control policies may unnecessarily restrict in-
formation that could be used to generate insightful analytics. Finer access control,
such as Accumulo’s cell-level control, can maximize data sharing while maintaining
secrecy.

2.3 Naval Tactical Cloud
The Unified Cloud Data (UCD) ecosystem was developed by United States Army Intelli-
gence and Security Command (INSCOM) to improve data sharing and analytic capabilities.
The NTC project seeks to adapt the UCD model for use by the Navy [10]. NTC addresses
military information dissemination challenges including distribution of data over a tactical
force, prioritizing data movement in constrained network conditions, representation of data
for efficient movement across tactical networks, prioritizing data retention and indexes in
constrained storage conditions, and designing analytics that work across a distributed force.
NTC plans to meet these challenges by combing semantic web and big data technologies
to merge data sets from different communities leading to more insightful, actionable intel-
ligence.

Accumulo is an integral part of the NTC architecture. NTC data is represented in a graph
structure that defines relationships between data items. This structure makes it easy to add
new data or merge disjoint data sets. This data model requires the addition of metadata to
identify nodes of the graph, their properties, and the relationships between them. NTC uses

10

Accumulo to provide distributed storage of raw data items and all metadata necessary to
integrate data into the graph.

Graph edges are three tuples that identify a subject, object, and a relationship between
them. Subjects and objects can be any entity within the context of the data that the graph
describes. These are referred to collectively as Terms and are stored together in an Accu-
mulo Term Table. Relationships are stored in a separate Predicate Table. The Statement

Table stores the graph edges via the subject-object-predicate tuples. An Artifact Table pre-
serves the raw input data items prior to graph processing [10, pp. 80-88].

Accumulo was chosen for this task, at least in part, because of its cell-level access control
capability. Fine-grained access control could enhance data availability and thereby enhance
analytical processing and information dissemination while maintaining information secu-
rity. Unfortunately, the NTC project is still under development and a detailed description
of how Accumulo’s cell-level access control would be used in NTC is not available.

11

THIS PAGE INTENTIONALLY LEFT BLANK

12

CHAPTER 3:
Accumulo Overview

Accumulo is a distributed data storage application developed by the National Security
Agency (NSA), following and extending Google’s BigTable design [20]. Under pressure
from the United States Senate Armed Services Committee, the NSA submitted Accumulo
as an open source project that is now run by Apache [24]. Accumulo is a NoSQL database,
a term used to describe a large family of data storage solutions that do not adhere to a
traditional relational database model. Like other NoSQL databases, Accumulo provides a
simple and flexible data model with restricted query semantics. This simplicity is credited
as enabling scalability, handling large data sets while maintaining efficient data retrieval
performance. Benchmarking studies have shown Accumulo to be capable of processing
hundreds of terabytes of data at rates of over 100 million data entries per second [25]–[27].
In contrast to similar column-oriented NoSQL data stores, Accumulo adds cell-level ac-
cess control to its data retrieval model. This chapter describes Accumulo’s data model and
system architecture.

3.1 Data Model
While Accumulo is a column-oriented store, like Google BigTable and Apache HBase, it
can be viewed as a simple key-value store. The key is composed of five different elements:
row, column family, column qualifier, column visibility, and a timestamp (see Figure 3.1).

Row
Column
Family

Column
Qualifier

Column
Visibility Timestamp Value

Key

Figure 3.1: Accumulo key-value relationship

The row, column family, and column qualifier elements are used to uniquely identify a set

13

of timestamped values in Accumulo. All information that will be used to locate a specific
value must be encoded in these three elements of the key. The column visibility element is
used to enforce Accumulo’s cell-level access control. Clients present a set of authorizations
to Accumulo, which it uses to filter data it returns to the client based on the policy in
each column visibility element. We discuss the interaction between authorizations and
column visibilities in more detail in Chapter 4. The timestamp element is used to implement
cell-level versioning. Any entries with identical row, column family, and column qualifier
elements are assumed to be different versions of the same value field. By default, Accumulo
returns only the most recent version of an entry. The value element is the raw data stored in
Accumulo. All elements of the key-value pair are stored as byte arrays with the exception
of the timestamp, which is stored as an integer. This generic typing of key elements allows
the Accumulo client flexibility in determining what data types will be used as each part of
the key-value entry.

Accumulo automatically sorts data lexicographically by key upon ingest, so data with sim-
ilar keys are stored together. This strategy allows efficient range queries to take advantage
of data locality: related data, which is more likely to be accessed near the same time, is
stored near each other, decreasing overall access time.

Accumulo groups sorted key-value pairs into tables. Tables are used to organize and dis-
tribute Accumulo entries across data storage nodes. Tables can be split along row bound-
aries into smaller subsets called tablets. Tablets are the basic data structures that are main-
tained by individual nodes in Accumulo’s distributed architecture.

The combination of table, row, column family, and column qualifier can be used to apply
a logical hierarchy to Accumulo data [28]. The key hierarchy is flexible and can be used
to organize data in many ways, ranging from a traditional relational table framework to
completely unstructured data. Figure 3.2 shows how the Accumulo key hierarchy might
be used by an organization to store employee information. Each employee is represented
as a row in the Employees Table. There is no requirement for each row in a table to
have the same number or types of columns, so each employee could have different types of
information stored. In this example, Bob does not have an office, so no location information
is stored. In a traditional relational database, the Employees Table would have empty cells
in Bob’s location entries, resulting in inefficient use of space. The key-value data model

14

allows flexible data organization as well as efficient data distribution across the individual
nodes in Accumulo’s architecture.

Table:Employees

Row

Column qualifier

Column family

Value

Alice Bob

Personal Contact Location Personal Contact

Age Sex Phone Email Building Office Age Sex Phone Email

28 F 555-1111 alice@org.net B111 256 32 M 555-2222 bob@org.net

Figure 3.2: Accumulo key hierarchy

3.2 System Architecture
Accumulo relies on Hadoop Distributed File System (HDFS) and Zookeeper to provide
data storage across distributed commodity hardware. HDFS provides Accumulo with dis-
tributed data persistence. Zookeeper manages coordination of concurrent distributed pro-
cesses. Individual components of an Accumulo instance can run on separate machines in
different geographic locations.

3.2.1 Accumulo Components
The main components of an Accumulo instance are a master server, a monitor, one or more
tablet servers, a garbage collector, and one or more clients.

Master. The master is responsible for managing tablet servers. It ensures that each tablet
is assigned to exactly one tablet server and that load is balanced across tablet servers.

15

It manages recovery in the event of a tablet server failure to ensure reliable persis-
tence of tablets. It also handles table management requests (creation, modification,
deletion) from clients.

Monitor. The monitor provides a web interface to monitor Accumulo performance. It is
controlled by the master.

Tablet server. The tablet server is the main data management component of Accumulo.
Each tablet server handles a subset of all tablets in the Accumulo instance. The main
function of a tablet server is to handle read and write requests from clients. In re-
sponse to a write request, the tablet server saves new data in memory in the memtable

data structure, sorts key-value pairs in memory, and periodically writes sorted key-
value pairs to HDFS for permanent storage. The tablet server also make entries about
write events in a write-ahead log, to provide an efficient mechanism for tablet server
failure recovery. In response to a read request, the tablet server provides to the client
a sorted set of the requested key-value pairs, by merging data stored in HDFS and
memory.

Garbage collector. The garbage collector ensures efficient use of HDFS storage space by
identifying and deleting files that are no longer used by any process.

Client. Accumulo provides a client Application Programming Interface (API) that con-
tains interfaces for connecting to an Accumulo instance and executing read and write
requests.

3.2.2 HDFS Components
The main components of HDFS are a name node, a secondary name node, a job tracker,
one or more data nodes and one or more task trackers.

Name node. The name node is the master process in HDFS. It controls the HDFS names-
pace and client access to HDFS files. It keeps track of where in HDFS each individual
file is stored.

16

Secondary name node. The secondary name node tracks HDFS state information that is
used by the name node at startup. It is not a backup for the name node.

Data node. The data nodes store files in HDFS.

Job tracker. The job tracker manages MapReduce jobs. It divides each job into tasks and
assigns them to task trackers.

Task tracker. Task trackers perform work necessary to execute MapReduce jobs. They
perform tasks assigned by the job tracker.

Each of the Accumulo and HDFS components are implemented by separate processes.
Production implementations of Accumulo may co-locate these processes, if appropriate,
depending on hardware, performance and availability. Although it is possible to run all
Accumulo processes on one machine, an effective implementation will distribute workload
across multiple machines [29].

3.2.3 Hardware Architecture
Accumulo uses a distributed network of hardware to provide scalable data storage. Fig-
ure 3.3 illustrates the interaction between Accumulo components in a possible distributed
architecture. Each gray box indicates a separate physical machine, blue circles are pro-
cesses, and green rectangles highlight notable data structures. Arrows indicate communi-
cation between physical components.

17

Client

Master

Garbage
collector

Tablet Server Datanode

Task Tracker

Monitor

Secondary
Namenode Namenode Job Tracker

Tablet

Write ahead log

MemTable

Accumulo

Accumulo

HDFS

HDFS HDFS HDFS

Zookeeper

Accumulo

Zookeeper

Figure 3.3: Accumulo architecture

Client machines communicate with Zookeeper and tablet servers to make read and write
requests. Clients may communicate with the master to perform administrative tasks and
table operations (e.g., table creation). Zookeeper maintains consistent configuration and
status information for all tablet servers. The master communicates with the individual
tablet servers to distribute tablet load and respond to tablet server failure, and communicates
with Zookeeper to promulgate tablet server status. The namenode communicates with the
tablet server to provide the location of data in HDFS. It manages individual datanodes to
ensure proper data distribution throughout HDFS. The job tracker communicates with the
individual task trackers to execute MapReduce jobs. The secondary namenode maintains
state information for the namenode, to be used if the namenode is restarted.

18

CHAPTER 4:
Accumulo Cell-Level Policy Enforcement

Accumulo was the first to implement cell-level access control in the domain of NoSQL
databases [30]. Databases generally grant user access permission at the table level [31],
and in some cases, additional algorithms or data structures can be used to implement row
or column level access control [32]. Accumulo’s cell-level security is native functionality
that gives system administrators tighter control of user access to data. With coarser data
access control, an administrator may have to make a choice between data security and
availability. If an entire table, column, or row is restricted, there may be information within
that dataset that should be accessible but is restricted to keep the other data in the dataset
secure. Accumulo cell-level access control provides flexibility that prohibits access to data
in accordance with policy, while maximizing access to other data [33].

Accumulo’s fine-grained access control is implemented by a column visibility label that is
attached to each key-value pair. Clients that query the Accumulo database must provide a
set of authorizations that are compared against column visibilities to determine if the client
has access to each key-value pair. Accumulo only returns those entries that are accessible
by the client. In this chapter we examine the process that Accumulo uses to enforce cell-
level data access control.

4.1 Column Visibility
An Accumulo column visibility is a security label that is applied to each key-value pair.
Although the column visibility is described in Accumulo documentation as an element of
the key, it is not used to identify or locate data. Rather, it is an additional piece of metadata
that is used to filter key-value pairs that are returned to the client. The visibility label is
implemented as a Java ColumnVisibility object that becomes part of the key in each entry
upon insertion. Within each ColumnVisibility object is a boolean expression that describes
the authorizations needed to access the respective entry. A ColumnVisibility object stores
the visibility expression in two ways. The first is a character string representing the raw
boolean expression. The second is the root node of a binary tree describing the visibil-
ity expression. The ColumnVisibility object parses the visibility expression and generates

19

a tree during initial construction of the object. Client code that queries the Accumulo
database must present authorizations that satisfy the boolean expression in order to retrieve
a particular entry.

4.1.1 ColumnVisibility Expression Syntax
The visibility expression is a boolean expression that describes a set of authorizations that
must be provided to gain access to the data. The expression relates a set of tokens through
logical conjunction and disjunction. Syntactically, tokens are represented by character
strings, conjunction by the “&” character, and disjunction by the “|” character. Conjunctive
phrases must be grouped separately from disjunctive phrases using parentheses to explicitly
indicate precedence of operations. Beyond this minimum requirement, additional paren-
theses may be used as desired to group individual tokens or groups of tokens. Token strings
in the visibility expression do not need to be quoted unless non-standard characters are re-
quired. Standard characters include alphanumerics, underscore, hyphen, colon, period, and
frontslash. If the token is quoted, any characters can be used with the exception of back-
slash and double quotes. These characters must be prefaced by a backslash when used in
quoted strings.

Figure 4.1 is a context-free grammar representation of the ColumnVisiblity expression syn-
tax. Non-terminal symbols are enclosed in angled brackets. Terminal symbols are enclosed
in single quotations. Braces indicate a set of ASCII character terminal symbols. Within
braces, the carat represents a logical negation indicating that the subsequent characters are
not part of the set. The dash indicates a range of ASCII characters. Table 4.1 provides
examples of valid and invalid visibility strings.

Valid Invalid

(one&two)|(three&four) one&two|three

((A)&(B))|C|(D) A!&B#

./a/:2-_-&:b:__-4/: "1234&"&5678"

"#!\""|"*@\\%" "abc\123"

Table 4.1: Examples of valid and invalid ColumnVisibilities

20

 <VISIBILITY> ::= '(' <VISIBILITY> ')'
 | <TERM>
 | <ANDS> '&' <ANDS>
 | <ORS> '|' <ORS>

 <ANDS> ::= '(' <ANDS> ')'
 | <TERM>
 | '(' <ORS> ')'
 | <ANDS> '&' <ANDS>

 <ORS> ::= '(' <ORS> ')'
 | <TERM>
 | '(' <ANDS> ')'
 | <ORS> '|' <ORS>

 <TERM> ::= '(' <TERM> ')'
 | '"' <QUOTECHARS> '"'
 | <NOQUOTECHARS>

 <QUOTECHARS> ::= <QCHAR>
 | <QCHAR> <QUOTECHARS>

 <QCHAR> ::= [^\"]
 | '\\'
 | '\"'

<NOQUOTECHARS> ::= NQCHAR
 | NQCHAR NOQUOTECHARS

 <NQCHAR> ::= [a-zA-Z0-9_-:./]

Figure 4.1: ColumnVisibility expression syntax as a context free grammar

4.1.2 Parsing a ColumnVisibility
A ColumnVisibility object contains a parsing algorithm that is used to generate a binary
tree from the boolean visibility expression. The tree is used to facilitate authorization
checking during a query. The parser scans the expression left to right looking for “&” and
“|” characters which become the root nodes of subtrees within the parse tree. The leaf
nodes of the parse tree are the terms of the visibility expression.

Each node is a Node object containing three pieces of information: range, type, and chil-

21

dren. The Node range is defined by a start integer and an end integer which are indexes into
the ColumnVisibility expression character array. These two integers indicate a portion of
the ColumnVisibility expression, beginning with start and up to but not including end, that
is encompassed by the subtree beginning with that Node. The type is an integer indicating
whether the Node is the root of an AND or an OR subtree, or a TERM leaf Node. The
child nodes are stored as a list of Node objects. Figure 4.2 is the parse tree for an example
ColumnVisibility expression. Arrows in the tree indicate child Nodes.

start: 0
end: 25

type: OR

start: 13
end: 24

type: AND

start: 1
end: 10

type: AND

start: 18
end: 24

type: TERM

start: 12
end: 17

type: TERM

start: 5
end: 10

type: TERM

start: 1
end: 4

type: TERM

expression: (r e d & g r e e n) | (b l u e & o r a n g e)

array index: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Figure 4.2: Example ColumnVisibility parse tree

4.2 Authorizations
Authorizations are security tokens provided by the client when querying the Accumulo
database. Each token is a string that is intended to identify some level of data access au-
thority. When a user is created in Accumulo, it is assigned a set of authorizations, stored in
an Authorizations object. Any client that connects to Accumulo as that user, must submit
a subset of the authorizations stored in the user account. The client may choose which
of the authorizations are necessary for each query. Any query that is submitted with au-
thorizations outside of the set stored in the user account will fail. If the client provides
an appropriate subset of authorizations, the provided authorizations are compared to the
ColumnVisibility expression associated with each key-value pair in the requested range of

22

entries. If the authorizations satisfy the ColumnVisibility expression, that key-value pair is
returned to the client.

For the remainder of this chapter, we provide a detailed guide through the Accumulo code
that processes authorizations during data queries. We use Accumulo version 1.5.0 as the
reference source code [34]. The discussion is divided into three parts. First, the client
code determines the appropriate authorizations and sends them with the data query to the
tablet server. Next, the tablet server receives the query request from the client and retrieves
the appropriate key value pairs. Finally, we discuss the policy enforcement point at which
the tablet server filters the results that are returned to the client. Filtering is based on a
comparison of the client authorizations and the column visibility associated with each key-
value pair.

Throughout this discussion, we reference three Java constructs: objects, fields, and meth-
ods. Objects are italicized for clarity. Fields, or variables within objects, are further dif-
ferentiated using bold font. Methods, or object functions, are also bold but have a set of
parentheses at the end of the name. The first time we reference each construct, we present
the full package name to establish its location within the source code. Subsequent refer-
ences include only that portion of the name necessary to avoid ambiguity. We do not cover
all of the Accumulo code used to process queries, and the arguments noted for each step are
not necessarily all the arguments required to properly execute that portion of code. These
omissions allow us to focus on authorization processing within the query framework.

4.2.1 Client Authorization Handling
To query data, Accumulo client applications must first connect to an Accumulo instance
using valid user credentials. Using a set of authorizations, the client creates a scanner that
utilizes that connection to retrieve the appropriate data. The scanner provides an iterator
framework that the client uses to step through the results of the query. The iterator sends
the query request to the appropriate tablet server and supplies the results to the client.
Figure 4.3 shows the flow of authorizations through the client code.

23

Scanner

ScannerIterator

Connector

Authorizations

creates

Authorizations
to tablet server

Authorizations

Figure 4.3: Client side Authorizations flow

Connect to Accumulo instance

• The client connects to an Accumulo instance by instantiating accumulo.core.client.Connector

using the appropriate username and password
• The code implementing a Connector object is supplied in

accumulo.core.client.impl.ConnectorImpl

Create a scanner

• The client obtains authorizations directly from user or from 3rd party authentication
service
• The client instantiates accumulo.core.security.Authorizations using user authoriza-

tion strings
• The client calls Connector.createScanner() with Authorizations as an argument
• createScanner() instantiates accumulo.core.client.Scanner

• Scanner implementation code is supplied in accumulo.core.client.impl.ScannerImpl

24

Scanner retrieves results from tablet server
• When the client iterates through the Scanner results, the ScannerImpl.iterator()

method is called
• iterator() uses Authorizations to instantiate a accumulo.core.client.impl.ScannerIterator

• ScannerIterator constructor uses Authorizations to instantiate
accumulo.core.client.impl.ThriftScanner.ScanState

• ScannerIterator.run() calls ThriftScanner.scan() with ScanState as an argument
• scan() calls accumulo.core.tabletserver.thrift.TabletClientService.Client.startScan()

with Authorizations as an argument
• startScan() calls Client.send_startScan() with Authorizations as an argument
• send_startScan() instantiates TabletClientService.startScan_args and stores Autho-

rizations in startScan_args.authorizations
• send_startScan() calls Client.sendBase() with the string “startScan" and startScan_args

as arguments
• sendBase() implementation code is supplied in thrift.TServiceClient.sendBase()
• sendBase() sends “startScan" to tablet server then calls startScan_args.write()
• write() calls startScan_args.startScan_argsStandardScheme.write() with startScan_args

as an argument
• write() sends each argument from startScan_args to the tablet server sequentially
• Client.startScan() calls Client.recv_startScan() to get results from tablet server

4.2.2 Tablet Server Authorization Handling
The tablet server receives the query request, including authorizations, from the client. The
tablet server first checks the authorizations against those stored in the user account. If
the authorizations are a subset of the user account authorizations, the tablet server creates
an iterator to scan the appropriate tablet or tablets. The iterator filters results based on
comparison of authorizations and column visibilities. Figure 4.4 illustrates server side
authorization flow.

25

VisibilityEvaluator

ScanSession

VisibilityFilter

TabletServer

check Authorizations
against user account

Client sends
“startscan” with
Authorizations

pass fail

Authorizations

Authorizations Authorizations

query fails

check Authorizations
against ColumnVisibility

entry filtered
from client

entry returned
to client

pass

fail

Figure 4.4: Server side Authorizations flow

Start tablet server
• accumulo.start.Main starts an accumulo.server.tabletserver.TabletServer process
• TabletServer.main() calls TabletServer.run()
• TabletServer.run() calls TabletServer.startTabletClientService()
• startTabletClientService()

– instantiates a TabletServer.ThriftClientHandler object
– uses ThriftClientHandler to instantiate an

accumulo.core.tabletserver.thrift.TabletClientService.Iface object
– uses Iface to instantiate a TabletClientService.Processor object
– calls TabletServer.startServer() with Processor as an argument

Initialize scan
• The TabletServer receives the client query request with “startScan" method indicated
• Processor maps “startScan" string to call to ThriftClientHandler.startScan() method
• TabletServer executes startScan() with client Authorizations as an argument
• startScan()

26

– calls accumulo.server.security.SecurityOperation.getUserAuthorizations() with
client user credentials as an argument

– verifies that Authorizations are a subset of the authorizations listed in the client’s
Accumulo user account

– calls onlineTablets.get() to locate the appropriate accumulo.server.tabletserver.Tablet

to fulfill the client request
– instantiates a TabletServer.ScanSession and stores Authorizations in ScanSes-

sion.auths
– instantiates a Tablet.Scanner by calling Tablet.createScanner() with Authoriza-

tions as an argument
– stores Scanner in ScanSession.scanner
– calls ThriftClientHandler.continueScan() with ScanSession as an argument

Iterate through requested data
• continueScan() calls accumulo.server.tabletserver

.TabletServerResourceManager.executeReadAhead() with
ScanSession.NextBatchTask as an argument
• executeReadAhead() calls NextBatchTask.run()
• run() calls ScanSession.Scanner.read()
• read()

– instantiates Tablet.ScanDataSource with Authorizations as an argument
– uses ScanDataSource to instantiate

accumulo.core.iterators.system.SourceSwitchingIterator

– calls Tablet.nextBatch() with SourceSwitchingIterator as an argument
• nextBatch() calls SourceSwitchingIterator.seek()
• SourceSwitchingIterator.seek() calls ScanDataSource.createIterator()
• createIterator() uses Authorizations to instantiate

accumulo.core.iterators.system.VisibilityFilter

• VisibilityFilter constructor uses Authorizations to instantiate
accumulo.core.security.VisibilityEvaluator

• SourceSwitchingIterator.seek() calls ScanDataSource.readNext()
• readNext() calls VisibilityFilter.seek()
• VisibilityFilter.seek() implementation code is supplied in accumulo.core.iterators.Filter.seek()

27

• Filter.seek() calls Filter.findTop()

Check visibility of each key-value pair
• Filter.findTop() calls VisibilityFilter.accept() with the key and value as arguments
• accept() calls VisibilityEvaluator.evaluate() with accumulo.core.security.ColumnVisibility

taken from the key as an argument
• evaluate() verifies that the Authorizations satisfy the ColumnVisibility expression

4.2.3 Checking Authorizations against Visibilities
The policy enforcement point of Accumulo’s cell-level security is the comparison of client
supplied Authorizations against the ColumnVisibility expressions in each key-value pair. At
this point, Accumulo decides whether to return data to the user. The Accumulo construct
that performs the comparison is the VisibilityEvaluator. The VisibilityEvaluator uses the
parse tree constructed for the ColumnVisibility expression and evaluates it against the Au-

thorizations. The VisibilityEvaluator starts at the root of the ColumnVisibility parse tree
and works toward the leaves. It checks the type of each Node in the tree to determine if it
is a leaf Node. If the Node is a leaf Node, the VisibilityEvaluator checks whether the au-
thorization token associated with that Node is present in the Authorizations provided by the
client. If the Node is not a leaf Node, the VisibilityEvaluator evaluates the Node’s children.
Accumulo will not return data to the client unless the client supplied Authorizations satisfy
the entire boolean expression described by the ColumnVisibility parse tree.

The evaluation algorithm is performed by the VisibilityEvaluator.evaluate() method. The
Authorizations are stored as a field of the VisibilityEvaluator object. The algorithm begins
by examining the root Node. If the root Node is a TERM, evaluate() returns the result
of Authorizations.contains(term). If the root Node is an AND or an OR Node, evaluate()
is called recursively on the child Nodes. An AND Node will return TRUE if both of its
children return TRUE. An OR Node will return TRUE if any of its children return TRUE.
evaluate() returns TRUE if the Authorizations satisfy the full ColumnVisibility expression,
otherwise it returns FALSE. Pseudocode for the evaluate() method is shown in Figure 4.5.

28

Boolean evaluate(Node) {

 if Node.type == TERM:
 return Authorizations.contains(Node.term)

 if Node.type == AND:
 for child in Node.children:
 if !evaluate(child) return FALSE
 return TRUE

 if Node.type == OR:
 for child in Node.children:
 if evaluate(child) return TRUE
 return FALSE
}

Figure 4.5: Pseudocode for evaluate() algorithm

29

THIS PAGE INTENTIONALLY LEFT BLANK

30

CHAPTER 5:
Accumulo Client Applications

Accumulo provides a client API that allows applications to programmatically interact with
Accumulo data. Client applications typically add more data management features and anal-
ysis capabilities such as a graphical user interface to browse data, a more expressive query
language, data processing libraries for interpreting raw data, or graphical output for sim-
pler consumption by end-users. This chapter introduces interaction between Accumulo
and client applications and discusses some representative example applications using Ac-
cumulo.

5.1 Key Accumulo Client Interfaces
There are some Accumulo interfaces that are commonly used by client applications inde-
pendent of implementation [29]. These interfaces allow Accumulo clients to connect to
an Accumulo instance, write data to tables in Accumulo, and retrieve specific data entries
from Accumulo.

Connector. To connect to an Accumulo instance, the client creates a Connector object.
The Connector is constructed based on the location of the Accumulo master, and the
credentials for the user on behalf of whom the client application is operating. The
Connector establishes the line of communication between the client and Accumulo.

BatchWriter. Once connected to Accumulo, the client writes data using a BatchWriter

object. The BatchWriter is constructed using the name of the destination table. The
elements of the key-value pair are stored in a Mutation object which the BatchWriter

sends to Accumulo.
Scanner. To retrieve data, the client uses a Scanner object. A Scanner is constructed using

the name of the table, the authorization tokens used to access the data, and the range
of data requested. The Scanner provides an iterator that the client uses to step through
the results of the scan.

These interfaces form the foundation of client interaction with Accumulo and allow client
applications to perform basic write and read operations to store and retrieve data. Figure 5.1

31

is a sample of code demonstrating a client connecting to Accumulo, storing an entry, then
retrieving that entry. This example assumes that the user username and table tableName

have already been established in the Accumulo instance instanceName.

//Connect to Accumulo instance
Instance instance = new ZooKeeperInstance("instanceName","zooServerName");
Connector conn = instance.getConnector("username",new PasswordToken("password"));

//Create entry
Mutation mutation = new Mutation("rowName"); //row id
mutation.put("columnFamilyName", //column family
 "columnQualifierName", //column qualifier
 new ColumnVisibility("visibilityName"), //column visibility
 System.currentTimeMillis(), //timestamp
 "entryValue"); //value

//Store entry in Accumulo
BatchWriter writer = conn.createBatchWriter("tableName",new BatchWriterConfig());
writer.addMutation(mutation);
writer.close();

//Retrieve entry
Scanner scan = conn.createScanner("tableName",new Authorizations("visibilityName"));
for (Entry<Key,Value> entry : scan) {

System.out.println(entry.getValue().toString());
}

Figure 5.1: Accumulo client code example

5.2 Multi-User Client Applications
When using Accumulo as part of a data management system, the client application will
likely have many users that need to access different subsets of data. Accumulo provides
cell-level security labeling to facilitate data segregation in a multi-user environment. Client
applications, however, are not intended to run under the identity of different users or to au-
thenticate to Accumulo under the identities of different users [29]. Instead, one Accumulo
user is created and the client application accesses Accumulo through that user’s creden-
tials. The client application access control policy must include a strategy for associating
the appropriate set a privileges with each user.

There are two sets of privileges client applications manage. Administrative permissions
include user management, system settings, and the ability to access or modify tables. Cell-
level authorizations allow users to access Accumulo entries.

32

Accumulo provides no assistance to the client in managing administrative permissions as-
sociated with application users. The Accumulo user necessarily has all administrative per-
missions required for the client application to function on behalf of any application user.
Thus, an application user has all of the same permissions as the Accumulo user, unless the
client takes steps to restrict user activity.

Controlling user access to data is a distinct problem from managing administrative permis-
sions. The ability to access individual entries in Accumulo is dependent on the Authoriza-

tions provided by the user. The Accumulo user is assigned Authorizations covering the
entire set of Authorizations any application user might need. It is the responsibility of the
application to verify user credentials and prepare an appropriate set of Authorizations that
reflect the user’s permissions prior to querying Accumulo. Accumulo’s cell-level security
integrates security label processing into the database, but the client application must have a
reliable procedure in place for verifying the identity of its users and associating appropriate
Authorizations with each query submitted by a user.

5.3 Accumulo Client Examples
Accumulo clients can be simple applications that use only the native Accumulo client API
(Figure 5.2(a)), or they can scale to much larger applications that provide a more abstract
user interface and integrate with other applications (Figure 5.2(b)). We provide three ex-
amples of Accumulo client applications that illustrate the range of potential use cases.

33

client

Accumulo

user

(a) Simple Accumulo Client

Accumulo

application server

application client
3rd-party

authentication
service

data source

user

user

user

user

data ingest

queries

write data and
respond to queries

user authentication

(b) Non-trivial Accumulo client

Figure 5.2: Examples of Accumulo client structure

5.3.1 Trendulo
Trendulo [35] is a demonstration application developed for Accumulo. It is composed of an
ingest application to store Twitter data in Accumulo and a web application that allows users
to query the Twitter data. The ingest application is written in Java and interfaces with the
Twitter Streaming API. The web application is written in HTML, JavaScript, and Java and
incorporates several open source application development tools including Spring, JQuery,
Bootstrap, ICanHaz, and Highcharts. It can be deployed using an open source web server
such as Apache httpd or Nginx. Web application users issue simple queries to view Twitter
trend data, showing frequency of target keywords over various time periods. Trendulo does
not use column visibilities and does not differentiate between individual users. As a result,
Trendulo provides little insight into the data security features of Accumulo.

5.3.2 Sqrrl
Sqrrl is a company founded by Accumulo developers that provides a large-scale enterprise
data management solution. Sqrrl Enterprise [36] uses Accumulo to facilitate real-time ap-
plication development. It provides its own methods for streaming data ingest and for batch
ingest of static data (i.e., of JSON or CSV data). It also implements security controls that
incorporate Accumulo’s cell level security. It can identify and authenticate users, provide
automatic data labeling based on organizational policy, and provide data encryption for an
additional level of security. Sqrrl Enterprise also enables complex data analysis through
additional data models, more expressive query languages, an indexing framework, and cus-

34

tom iterators. Sqrrl Enterprise is an example of a production application that implements
user management policies; however, lack of access to this application prevents us from
analyzing it as a case study.

5.3.3 Koverse
Koverse [37] is a data storage and analysis framework that is focused on operationalizing
large amounts of data. Koverse automatically processes data upon ingest to store it in a
consumable form. It uses role-based access control to manage multiple users but relies on
third party applications to make use of Accumulo’s cell-level security. Koverse provides
data analysis algorithms that can merge data sets and identify meaningful relationships
within large data sets. Koverse also provides support for developers to extend Koverse
capabilities into custom applications. Koverse is the data query interface for the Naval
Tactical Cloud project [10]. In the next chapter, we examine Koverse as a case study in
how Accumulo is integrated into a production application.

35

THIS PAGE INTENTIONALLY LEFT BLANK

36

CHAPTER 6:
Accumulo Client Case Study

Koverse is a large-scale data management application that uses Accumulo for persistent
data storage. In this chapter, we examine Koverse as a case study of Accumulo client
application design. We do not provide a complete description of Koverse functionality.
Instead, we focus on components of Koverse that illustrate interaction with Accumulo.
We describe user management in a multi-user environment with a focus on data access
authorization. Additionally, we illustrate the process of executing queries in Koverse to
include the transformation of a user query into an Accumulo Scanner. These core functions
form the foundation of Accumulo client design.

6.1 Architecture
The Koverse application has two main components—the Koverse server and the Koverse
web application. The web application is the front end for Koverse and provides a graphical
user interface. It is written in HTML, JavaScript, and Java and uses the JBoss development
framework [38]. Built in applications within the web interface allow users to:

• Manage data collections
• Import data from external sources
• Query data
• Analyze data through transforms
• Manage users and groups

Users can perform all Koverse functionality through the web interface, but it is also possible
to interact directly with the Koverse server using the Koverse API.

The Koverse server processes requests from the Koverse web application. It is written
in Java, and interacts with the Accumulo client API. The Koverse server also interacts
with third-party applications to perform authentication and security token assignment for
Koverse users. Figure 6.1 illustrates component interaction in a Koverse environment.

37

Accumulo

Koverse server

Koverse web
application

3rd-party
application

data source

user

user

user

user

data ingest

user actions

 write data
execute queries

user authentication
security token management

data sourcedata sources

Figure 6.1: Koverse application architecture

6.2 Data Model
Koverse overlays its own data model on top of the Accumulo data model. Koverse stores
data in Records which are sets of key-value pairs, referred to as Fields. The Field val-
ues can be one of several native data types (e.g., strings, integers, floating point numbers,
timestamps, geospatial data). Field names must be unique within a Record, but may be
reused across Records. Fields are not strongly typed, so two different Records using the
same Field name may have different types associated with those Fields. Records can pro-
vide more complicated structure to data by nesting additional Fields within a Field value.
Koverse applies security labels, analogous to Accumulo ColumnVisibility objects, at the
Record level. When a Record is written to Accumulo, each Field is mapped into Accu-
mulo’s column-oriented model (see Table 6.1).

Each Koverse Record is assigned to one Collection. A Collection forms a set of related
Records. Collections are schema-less, and each Record in the Collection can have a unique
Field structure, including the number of Fields and the types of each Field. Mappings of
Records to Collections and user Collection permissions are stored in a Java Persistence
API (JPA) [39] system that is separate from Accumulo. No information indicating the
Collection corresponding to a Record is stored in Accumulo.

38

A Collection can be thought of as a table in a relational database where each Record is a row
and the Fields are columns. Collections, however, do not map to Accumulo tables. Koverse
stores all data in two distinguished tables in Accumulo: the index table and record table.
The index table stores a portion of each Record, organized in a way that improves query
execution. The record table stores all Koverse Records regardless of which Collection the
Record is associated with. Each entry in the record table is one Field of a Koverse Record.

Accumulo entry Koverse Record

Row ID Record ID

Column Family not used

Column Qualifier Field name

Column Visibility Koverse security label

Timestamp applied by Accumulo

Value Field value

Table 6.1: Mapping a Koverse Record to an Accumulo entry

6.3 User and Group Management
Koverse can manage many concurrent users. Users are identified by a username and email
address and authenticate using a password. Koverse administers role-based privileges
through groups. Each group is given a set of privileges, and a user assumes the privi-
leges of all the groups it is assigned to. User and group information is stored in the JPA
system. Although there are many distinct Koverse users, the Koverse server accesses Ac-
cumulo through a single user (by default, the Accumulo root user). The Koverse server has
the full set of permissions in Accumulo which includes reading, writing, and modifying
any table or data entry. Controlling access to data stored in Accumulo is completely depen-
dent upon Koverse’s ability to associate appropriate privileges with the Accumulo requests
it performs on behalf of users.

To authenticate, a Koverse user provides login credentials through the Koverse web inter-
face. By default, Koverse manages user authentication locally. Koverse compares the user
credentials against the stored login information for that user. If the credentials match, Ko-
verse creates a session for the user. Koverse can also utilize a third-party authentication

39

service. In that scenario, when the user submits credentials through the Koverse interface,
Koverse forwards the credentials to the authentication service which verifies the user iden-
tity. Koverse verifies the response from the authentication service, and if the user provided
appropriate credentials, creates a session for the user.

Once the user has authenticated, it must obtain authorization to perform tasks. For admin-
istrative tasks—such as user and group management, Collection configuration, and audit
log access—Koverse checks the groups associated with the user. If any of the groups has
permission to perform the requested task, the user is granted access.

To access data in a Record, users must have permission to access the Collection associated
with that Record. During a query, Koverse checks the user’s groups, and then checks if any
of those groups have access to the Collection. If one of the user’s groups has access to the
Collection, the user is granted access to the Collection.

Access to a Collection does not guarantee that the user can access all Records in that Col-

lection. If any of the requested Records have security labels, the user must provide an
appropriate set of tokens to access those Records. Koverse does not natively manage the
security tokens for each user. To obtain the necessary tokens, the user must authenticate
to a third-party service. Koverse submits the user’s credentials to the third party service
which verifies the credentials and returns the appropriate tokens. Koverse stores the tokens
for the duration of the user’s session and uses them for any queries submitted by that user.

6.4 Queries
Users access data by submitting queries to the Koverse server. The Koverse web interface
has built in search functionality that allows users to query data in a way that resembles an
Internet search engine. Users can search for a term in any Field, specify a value for a Field,
or search for a range of values in a particular Field. Koverse translates queries from the
search application into a JavaScript Object Notation (JSON) [40] formatted list of Field

names and values. Example search application queries with their respective JSON queries
are shown in Figures 6.2 and 6.3 [41].

40

mary

"mary had a"

name:mary

name:mary occupation:shepherd

height:[60 TO 70]

Figure 6.2: Koverse Search application query examples, from [41].

{“$any”:“mary”}

{“$any”:“mary had a”}

{“name”:“mary”}

{“$and”:[{“name”:“mary”},{“occupation”:“shepherd”}]}

{“$and”:[{“height”:{“$gte:60”}},{“height”:{“$lte”:“70”}}]}

Figure 6.3: Koverse JSON query examples, after [41].

After parsing user queries and verifying their syntax, Koverse generates an internal repre-
sentation of the query that resembles a SQL “SELECT” statement. The Koverse query is
stored in a Java SelectStatement object and has the format:

SELECT(FieldNames,CollectionIDs,Expression,Offset,Limit)

The CollectionIDs and FieldNames restrict the search to specific Collections and specific
Fields. The Expression is a restriction on the Field values and mirrors the submitted query.
Offset and Limit allow the user to control the range of results that are returned. An Offset

of n ignores the first n results, and a Limit of m returns a maximum of m results.

Once the query has been translated to a SelectStatement, it is executed in two stages. First
an Accumulo Scanner is created to scan the index table to quickly locate the required
Records. Koverse uses the results of the index scan to create another Accumulo Scanner

for the record table. The range of the record table Scanner is set based on the results of the
index table scan.

41

6.5 Tokens
Koverse has the ability to apply security labels at the Record level. When data is ingested
in Koverse, the security label is applied as an Accumulo ColumnVisibility object (see Ta-
ble 6.1). Although each Field in a Koverse Record is stored in a separate Accumulo col-
umn, Koverse maintains a Record as a single entity, and all Accumulo entries from the
same Record are assigned the same ColumnVisibility. User queries for restricted Records

must include a set of access tokens.

By default, security labels are not associated with any Koverse Records. If Record labels
are desired, Koverse does not provide native support for user token management: this func-
tionality requires interaction with a third party application. When the user authenticates,
the third party application provides the proper set of tokens for that user. Those tokens
are stored for the duration of the user’s Koverse session. Koverse uses these tokens in any
query the user makes and constructs the appropriate Authorizations object for the Accu-
mulo Scanner.

42

CHAPTER 7:
Information Security Discussion

Accumulo cell-level access control assists application developers with data access policy
enforcement; however, it does not provide a complete information security solution. When
describing Accumulo’s security capabilities in a PC World interview, Accumulo developer
Adam Fuchs noted, “[s]ince the applications in this model can push down the security
model into the database and companion components, you don’t have to solve that in the
application” [42]. This statement, and similar ones from others in the Accumulo develop-
ment community, may give developers a false sense of confidence in the level of security
Accumulo can provide. Production applications must implement sound policy enforcement
logic to integrate securely with Accumulo. In this chapter, we present potential security
problems Accumulo client applications should consider. We do not provide an exhaustive
list of all potential security concerns, but these examples should convince an application
developer that information security is a significant problem that is not solved exclusively
using native Accumulo functionality.

7.1 User and Privilege Management
Proper management of user accounts and their associated privileges is critical for the se-
curity of any multi-user application. Functionality exists to manage users and privileges
within Accumulo, but these interfaces are not likely to be used to manage client applica-
tion users. As previously described, it is not expected that a large-scale Accumulo-based
application will register a user account in Accumulo for every application user. Instead,
Accumulo holds one user for the client application, which manages its own users sepa-
rately. For clarity, in further discussion we refer to client application users as appusers and
the Accumulo user as acmuser. Because many appusers are mapped onto one acmuser,
there is no ability to differentiate between appusers at the Accumulo level. The client ap-
plication authenticates to Accumulo as the acmuser, but must authenticate appusers and
assign appropriate privileges prior to making any Accumulo requests.

There are several types of privileges to consider in an Accumulo application. System per-
missions give users the capability to perform administrative actions, such as creating or

43

deleting users accounts and granting privileges to users. Table permissions allow users to
modify table entries or table metadata. Cell-level authorizations control access to individ-
ual table entries. Each type of privilege may be present in Accumulo, managed separately
by the client application, or both.

Because there are many appusers that access Accumulo through one acmuser, the acmuser

must hold all privileges necessary to perform Accumulo operations on behalf of any ap-

puser. It becomes the responsibility of the client application to prevent appusers from
using inappropriate acmuser privileges. The fact that privileges at the application level do
not necessarily map directly to privileges in Accumulo adds complexity to the problem.
For instance, a complex data model at the application model may require a set of privileges
that does not translate to Accumulo. In Koverse, data structures called Collections seem to
map closely to Accumulo Tables. It may seem logical then for any privileges associated
with a Koverse Collection to map to an Accumulo Table. Closer examination reveals that
Koverse Collections do not directly parallel Accumulo Tables. In fact, there are two Accu-
mulo Tables used to store data regardless of the number of Collections created in Koverse.
Any privileges in Koverse associated with Collections management have no direct meaning
in Accumulo.

Cell-level Authorizations map more closely from the application to Accumulo, but even
these privileges may not translate directly. In the Koverse data model, security labels are
applied at the Record level. When the Record is inserted into Accumulo, the Record is
split into many entries and the security label is modified prior to being applied to all entries
from the Record. To manage Record level access control, Koverse utilizes a third-party
service that provides a set of access tokens for each user. In the application, the appuser

accesses a Record using these tokens, but at the Accumulo level, the acmuser accesses
multiple entries with a set of Authorizations that are distinct from the tokens provided by
the third-party service.

The following example illustrates a user management scenario and highlights potential
complications. Consider a fictional enterprise human resource information application,
HRapp, illustrated in Figure 7.1. HRapp stores employee information in two Accumulo
Tables—EmployeeInfo and EmployeeSalary—to isolate sensitive salary information from
more general personal information. The Tables are shown in a relational table format for

44

illustrative purposes. To understand the mapping to Accumulo entries, consider the en-
try for Peter’s age in the EmployeeInfo Table. The entry in Accumulo would have the
following structure: Row=‘1’ ColumnFamily=‘’ ColumnQualifier=‘Age’ ColumnVisibil-

ity=‘SalesDiv’ Value=‘34’. HRapp logic manages user access to each Table.

HRapp

IDapp

Accumulo

User Tokens

Peter SalesDiv

Joanna EngDiv

Anne SalesDiv

Milton EngDiv

Bill SalesDiv,EngDiv

User Authorizations EmployeeInfo EmployeeSalary

root root read, write, drop read, write, drop

acmuser SalesDiv,EngDiv read, write read,write

User Table access

Peter EmployeeInfo

Joanna EmployeeInfo

Anne EmployeeInfo,EmployeeSalary

Milton EmployeeInfo,EmployeeSalary

Bill EmployeeInfo,EmployeeSalary

Row Name Age Email

1 Peter [SalesDiv] 34 [SalesDiv] peter@corp.net [SalesDiv]

2 Joanna [EngDiv] 38 [EngDiv] joanna@corp.net [EngDiv]

3 Anne [SalesDiv] 31 [SalesDiv] anne@corp.net [SalesDiv]

4 Bill [Execs] 48 [Execs] bill@corp.net [Execs]

5 Milton [EngDiv] 33 [EngDiv] milton@corp.net [EngDiv]

Row Name Salary

1 Milton [EngDiv] 62000 [EngDiv]

2 Joanna [EngDiv] 63000 [EngDiv]

3 Anne [SalesDiv] 65000 [SalesDiv]

4 Bill [Execs] 64000 [Execs]

5 Peter [SalesDiv] 47000 [SalesDiv]

EmployeeInfo table

EmployeeSalary table

Accumulo user privilegesIDapp user information

HRapp user information

User authentication
and token retrieval

Data retrieval

Figure 7.1: HRapp example application.

HRapp authenticates its users using a third-party service called IDapp that verifies user cre-
dentials and returns an appropriate set of access tokens. HRapp interacts with Accumulo
through a single user, acmuser, which has full access to all data. Accumulo ColumnVisibil-

ities are applied based on the responsible organizational division—EngDiv for Engineering
employees, SalesDiv for Sales employees, and Execs for Executives. In each division there
is an operational manager and an human resources manager. The operational manager has
access to general employee information for his division, and the human resources manager
has access to both general and salary information for her division. Executives have access

45

to all employee information.

When users log into HRapp, they provide a set of credentials. HRapp forwards these cre-
dentials to IDapp which verifies the user identity and returns the user’s access tokens.
HRapp stores tokens for the duration of the user’s session. When a user issues a query,
HRapp creates an Accumulo request containing the appropriate table name and tokens.
HRapp does not allow users to query tables they do not have access to. For instance, if user
Peter, who is an operational manager, queries the EmployeeInfo Table, he would receive
the information in rows 1 and 3. If he queried the EmployeeSalary Table, his request would
be denied. If user Milton, who is a human resources manager, queries the EmployeeInfo

Table, he would receive rows 2 and 4. He would have to issue a separate query to retrieve
information in the EmployeeSalary Table and would receive rows 1 and 2. User Bill, an
executive, can query either Table and would receive all rows.

To enforce the above policy, HRapp must restrict user access to certain tables. The general
application design—HRapp translates appuser requests into acmuser requests—essentially
requires that table-level permissions be enforced by HRapp logic. The essential conflict
stems from a combination of two application characteristics. First, the acmuser must have
the ability to read all tables. Second, Authorizations do not specify table-level permissions
in Accumulo. Thus, if appuser Johanna can cause HRapp to query the EmployeeSalary

table, e.g., by misusing an interface, then the previously described access control policy
will be violated. It is not enough, in this example, for HRapp to properly associate access
tokens with each appuser via IDapp and rely on Accumulo to enforce all access control
policy requirements. The ambient authority that allows acmuser to read all tables could
be abused if HRapp fails to enforce table-level policies properly. In theory, table-level
enforcement could be pushed to Accumulo, if appuser access tokens were table specific.
Following our example, correcting this problem would require an additional term added to
the ColumnVisibilities in the EmployeeSalary Table (e.g., [EngDiv&Salary]) and updating
the appropriate user tokens in IDapp. This adds an additional layer of administration and
complexity when adding new application users or new database entries.

46

7.2 NoSQL Injection
Injection attacks are a common exploitation vector, particularly in web applications. They
are commonly used to retrieve sensitive or restricted data from application databases and
have been identified as a significant information security concern [43]. Injection attacks
typically occur when an application accepts user input insecurely. Attackers can craft input
in such a way that forces the application server to perform actions that are not meant to be
available to normal users. Injection attacks can allow attackers to perform any action of
their choosing on the database, including reading, writing, inserting or deleting arbitrary
data.

Injections attacks against SQL databases have been well explored, but similar attacks have
also been reported in the expanding NoSQL database community. The OWASP organiza-
tion proposes that NoSQL injection attacks may have more significant impact than SQL
injection because they are executed in a lower level procedural API [44]. Table 7.1 sum-
marizes potential vulnerabilities for some common NoSQL databases. We leave rigorous
examination of the applicability of these attacks to Accumulo as an open problem, but it is
important to note that divorcing an application from SQL databases does not remove the
potential for injection attacks.

47

Name Type Interface Languages Documented Query-
Language Attacks

Cassandra column CQL, drivers available for Java,
C#, Python

manual construction of
query strings [45]

MongoDB document JavaScript, drivers available for
many common languages

“$where” attacks [46]–
[48]

Redis key/value standard map manipulation
commands (e.g., GET, SET),
drivers available for many
common languages

redisCommand()
attack [49]

CouchDB document HTTP, JavaScript JavaScript injection,
file system traversal,
XSS [50]–[52]

Tokyo Cabinet key/value C, Perl, Ruby, Java, Lua binary protocol in-
jection vulnerabilities
[53]

Table 7.1: Summary of NoSQL stores and documented query language vulnerabilities.

7.3 Information Security Policy Enforcement
Terminology used in the Accumulo development community may give a false impression
of Accumulo’s security policy enforcement capability. Descriptions of Accumulo fre-
quently contain terms and phrases that are typically associated with Mandatory Access
Control (MAC) policies, for example: “mandatory attribute-based access control” [28],
access control through object “labels” [54], multiple “security levels” [29] or “security
classifications” [10] stored together, and “intermingling data sets” [55]. According to the
DOD Trusted Computer System Evaluation Criteria (TCSEC) standard, the only systems
associated with labeling are class B1 and above, where those labels “shall be used as the
basis for mandatory access control” [56]. This statement suggests that the use of data
labeling is highly correlated with mandatory access control policies. The use of MAC ter-
minology suggests that Accumulo can enforce an information flow control policy; however,
Accumulo’s native functionality cannot enforce such a policy.

MAC is an access control and information flow control policy that uses labels to restrict
access to objects based on a comparison of the subject and object security level. The

48

TCSEC standard states than in order to enforce a mandatory security policy, these labels
must be applied to each object in the system and must reliably identify the the objects’
sensitivity levels [56]. A MAC policy does not dictate access rules for individual subjects,
but relies on labels to enforce access control. This stands in contrast to a Discretionary
Access Control (DAC) policy that maintains a set of object access rights for each subject
and allows subjects to grant and revoke access to other subjects for objects they own [57] .

An immediate indication of Accumulo’s inability to enforce information flow policies is
the absence of a lattice-based ordering of Accumulo labels. A key feature of a MAC policy
is a lattice framework constructed by a partially ordered set of security levels [58]. The
lattice is necessary for determining dominance between two different security levels. The
dominance property determines if a subject is authorized to perform an action. Sandhu
(1996) implements a mandatory policy using “role hierarchies” in a lattice framework [59].
In Accumulo, ColumnVisibilities are used to label data, but no mechanism exists for deter-
mining ordering of cell-level labels. Access to Accumulo entries is based on a byte-by-byte
comparison of the boolean ColumnVisibility expression to user Authorizations. A client ap-
plication would need to provided additional logic to determine ordering.

To further illustrate Accumulo’s inability to enforce MAC, we consider the Bell-LaPadula
[60] model, a well understood MAC policy. Bell-LaPadula identifies three properties that
a secure system should exhibit. The simple security property requires that no user can read
data with a higher classification than the user’s security level. This property is commonly
referred to as “no read up.” The star property requires that no user can write data with a
lower classification than the user’s security level. This property is commonly referred to as
“no write down.” The tranquility property requires that no user can modify the classifica-
tion level of data [57]. Accumulo’s ColumnVisibilities may be able to enforce the simple
security property. With proper assignment of ColumnVisibilities to data and Authorizations

to users, Accumulo can ensure that users do not access unauthorized data (i.e. data for
which the user does not hold the appropriate set of Authorizations). For instance, a user
with a SECRET token would not be able to access TOP SECRET data; however, because
Accumulo does not impose order on ColumnVisibilities, that user would also not be access
UNCLASSIFIED data. To implement this ability, a user with SECRET clearance would
need Authorizations that include both SECRET and UNCLASSIFIED tokens. This may or

49

may not be a desired property in any particular implementation but illustrates a potential
problem.

Accumulo does not enforce access controls on write operations in the same way as read
operations. By default, there is no user Authorizations check when writing data. Any
user can write data with any ColumnVisibility value. This may violate the star property.
A user can read data with a high security label and write identical data to a cell with a
lower label. This problem is also referred to as leakage in some literature. If the Row,
ColumnFamily, and ColumnQualifier of the data are kept the same, this scenario would
also violate the tranquility property. The old entry would be effectively re-labeled with a
lower classification. Without restrictions administered by the client application, any user
with write access can effectively downgrade the classification of any data.

Accumulo has an optional configuration setting that can be applied at the table level that
prevents users from writing data with ColumnVisibilities that are not part of their Authoriza-

tions set. Recall that during read operations, Accumulo verifies that the subset of Autho-

rizations provided in the query satisfies the ColumnVisibility associated with the requested
data. Accumulo does not perform this check during write operations. Instead, Accumulo
simply verifies that the appropriate Authorizations are associated with the user. In the
recommended use case, in which all appusers operate through one acmuser, this check
provides no protection. When the request reaches Accumulo, it is executed by acmuser,
which holds the entire domain of Authorizations necessary for all appusers. Therefore,
any appuser could write data with any ColumnVisibility within the domain. The constraint
would, however, prevent appusers from writing data with nonsensical ColumnVisibilities

in the context of the application.

Accumulo’s loose restrictions on write operations prevent it from enforcing useful MAC
properties. If a data access policy allows only read operations, Accumulo could be used
to enforce the simple security property, but would likely require the client application to
provide some additional logic to fully implement an ordered lattice framework, especially
in the scenario in which multiple client application users are mapped to one Accumulo user.
If client application users routinely write to the database, Accumulo could provide only
DAC enforcement, and logic needed to enforce a MAC policy would have to be provided
by the client application.

50

CHAPTER 8:
Conclusion and Future Work

In this thesis, we studied Apache Accumulo’s cell-level access control. This fine-grained
access control can be used in data sets with varying degrees of sensitivity to maximize
accessibility while maintaining the required level of secrecy. This security feature gives
Accumulo a unique position in the quickly expanding NoSQL ecosystem and is particularly
interesting for the DOD where it is being integrated into projects like the Naval Tactical
Cloud.

8.1 Conclusions
We employed static analysis of source code to gain detailed insight into Accumulo’s cell-
level access control enforcement. We illustrated the execution path of a query starting
at the client Scanner interface and ending at the enforcement point in the TabletServer.
We formalized the syntax for a ColumnVisibility label and showed how Authorizations are
compared to ColumnVisibility expressions to filter query results. These details provide
more insight into Accumulo’s security policy enforcement mechanisms that can be used
for further study.

After understanding low-level details of Accumulo policy enforcement, we showed how
Accumulo could be integrated into a larger application. We highlighted important inter-
faces in the client library needed to perform basic read and write operations. We identified
several examples of applications that use Accumulo and detailed Koverse operation as a
case study. We used Koverse to show how an application could develop a custom data
model and map it to Accumulo. Most importantly, we showed how Accumulo’s recom-
mended user organization (multiple application users mapped to one Accumulo user) is
implemented in practice. We showed how a custom application query can be translated to
Accumulo queries. Although Koverse does not implement fine grained security by default,
we showed how that functionality would interact with Accumulo if used. The Koverse case
study gives readers a basic understanding of application integration with Accumulo. Our
work can be interpreted as a first step toward a thorough analysis of Accumulo information
security enforcement. Understanding the interaction between Koverse and Accumulo is

51

particularly useful for readers who are concerned with how Accumulo may benefit security
of sensitive DOD information.

We commented on potential security threats facing developers that build applications based
on Accumulo. We used a hypothetical application to illustrate potential user management
concerns. We identified injection attacks that have been carried out against other NoSQL
databases and may be relevant to some uses of Accumulo. We commented on Accumulo’s
inability to enforce information flow policies. These examples serve to demonstrate that
using Accumulo and it’s cell-level security feature is not a full solution to access con-
trol problems unless Accumulo is paired with well-designed enforcement mechanisms in
the client application. We believe that the combination of our technical discussion of Ac-
cumulo’s cell-level access control enforcement, illustration of Accumulo integration in a
larger application, and identification of potential security concerns may help future studies
learn more about Accumulo information security and lead to development of more secure
Accumulo based applications.

8.2 Future Work
The scope of this thesis was limited primarily to static analysis of Accumulo source code.
We were able to provide a detailed description of Accumulo’s security policy enforcement
using this method, but there are other methods that could be used to further investigate
information security in Accumulo. Potential areas for future research include:

Application vulnerability analysis
More detailed analysis could be done to determine if specific instantiations and con-
figurations of Accumulo have any vulnerabilities that may lead to a security com-
promise. For instance, in Chapter 2 we list several known injection attacks against
NoSQL databases, and follow-on studies could determine if these are applicable to
Accumulo. A starting point for such studies could be an open source JSON interface
for Accumulo called Jaccson [61]. According to its documentation, Jaccson’s design
is based on MongoDB’s API, and therefore, may be susceptible to attacks similar to
“$where” attacks used against MongoDB.

In addition to analysis of known attacks, future research could attempt to identify

52

Accumulo specific vulnerabilities using penetration testing tools such as OWASP
Zed Attack Proxy or fuzzing tools. Many of these tools are protocol specific, so
efforts could be made to adapt the general approach of a specific tool to testing of
Accumulo or Accumulo based applications. Web applications are the most frequent
targets for injection attacks and both Accumulo and HDFS supply web interfaces to
monitor system performance. Koverse also provides a web interface and is a compo-
nent of NTC. As Accumulo becomes more popular, there may be more large scale
applications available for testing.

Network traffic analysis
Accumulo components reside on disjoint physical machines and must communicate
across a network. Current versions of Accumulo communicate largely through re-
mote procedure calls over TCP/IP via Apache Thrift’s network stack [62]. If these
communications are insecure, they could leak sensitive information. Future stud-
ies could analyze all network traffic generated by Accumulo components, determine
what information is transmitted, and identify default communication security set-
tings. Based on this traffic analysis, researchers could determine what information
may be at risk and recommend vulnerability mitigation strategies.

Best practice configuration settings
The NoSQL ecosystem is relatively new and availability of security best practices
is limited. Future work could include a survey of NoSQL databases to determine
configuration properties that are security relevant. It may be possible to develop a
general set of security related best practices for NoSQL systems, but the wide range
of systems that fall under the NoSQL umbrella my require generalization to the point
of triviality. In any case, the development of a set of best practices specific for Accu-
mulo should be feasible.

Information flow control
We showed that Accumulo is not capable of enforcing information flow control poli-
cies without additional logic. Further research could propose how to achieve manda-
tory access control policy enforcement in an Accumulo application. One promising

53

area of research is using the NSA’s Cloud Security Gateway and Trusted Data Format
to implement a integrity lock [63] style architecture. Another method could modify
Accumulo to rely on a trusted operating system to enforce information flow policy
following approaches explored by Nguyen et al. [64] and Roy et al. [65]. A success-
ful study could validate the use of Accumulo in cross-domain DOD applications.

54

APPENDIX: Accumulo Installation

This guide covers the installation/configuration of Hadoop, Zookeeper and Accumulo.
These instructions were tested using a fresh install of Ubuntu-12.04 LTS (64-bit).

Install Hadoop 1.2.1
This guide will install and configure a single node pseudo-distributed version of Hadoop.

1. Install Java

$ sudo apt-get install openjdk-6-jdk

$ java -version

java version "1.6.0_27"

OpenJDK Runtime Environment (IcedTea6 1.12.6) \

(6b27-1.12.6-1ubuntu0.12.04.2)

OpenJDK 64-Bit Server VM (build 20.0-b12, mixed mode)

2. Disable ipv6 (recommended by many Hadoop users)

$ sudo vi /etc/sysctl.conf

Add the following lines to the end:

#disable ipv6

net.ipv6.conf.all.disable_ipv6 = 1

net.ipv6.conf.default.disable_ipv6 = 1

net.ipv6.conf.lo.disable_ipv6 = 1

3. Download Hadoop 1.2.1 from one of the Apache mirrors1, and unpack it.

$ wget http://goo.gl/0oR9TS -O hadoop-1.2.1.tar.gz

$ tar xzf hadoop-1.2.1.tar.gz

4. Define JAVA_HOME as the root of your Java installation.

$ vi hadoop-1.2.1/conf/hadoop-env.sh

1See http://hadoop.apache.org/releases.html

55

Adjust the following line:

export JAVA_HOME=/usr/lib/jvm/java-6-openjdk-amd64

5. Configure Hadoop Edit hadoop-1.2.1/conf/core-site.xml to reflect:

<configuration>

<property>

<name>fs.default.name</name>

<value>hdfs://localhost:9000</value>

</property>

</configuration>

Edit hadoop-1.2.1/conf/hdfs-site.xml to reflect:

<configuration>

<property>

<name>dfs.replication</name>

<value>1</value>

</property>

<property>

<name>dfs.support.append</name>

<value>true</value>

</property>

</configuration>

Edit hadoop-1.2.1/conf/mapred-site.xml to reflect:

<configuration>

<property>

<name>mapred.job.tracker</name>

<value>localhost:9001</value>

</property>

</configuration>

6. Configure ssh to be passwordless. Test to see if a password is required, using the
command:

$ ssh localhost

56

If you can’t ssh into localhost without a password execute the following:

$ ssh-keygen -t dsa -P ’’ -f ~/.ssh/id_dsa

$ cat ~/.ssh/id_dsa.pub >> ~/.ssh/authorized_keys

Install Zookeeper 3.4.5
This guide will install and configure Zookeeper for standalone operation.

1. Download Zookeeper from one of the Apache mirrors2, and unpack it.

$ wget http://goo.gl/1FQoec -O zookeeper-3.4.5.tar.gz

$ tar xzvf zookeeper-3.4.5.tar.gz

2. Create the configuration file zookeeper-3.4.5/conf/zoo.cfg:

tickTime=2000

dataDir=/var/lib/zookeeper

clientPort=2181

maxClientCnxns=100

The dataDir should point to an existing empty directory:

sudo mkdir /var/lib/zookeeper

sudo chown ‘whoami‘ /var/lib/zookeeper

Install Accumulo 1.5.0
This guide will install and configure Accumulo for a single computer.

1. Download Accumulo source from one of the Apache mirrors3, and unpack it.

$ wget http://goo.gl/mG73aD -O accumulo-1.5.0-src.tar.gz

$ tar xzvf accumulo-1.5.0-src.tar.gz

2. Build Accumulo.

$ sudo apt-get install maven

$ cd accumulo-1.5.0

2See http://zookeeper.apache.org/releases.html
3See http://accumulo.apache.org/downloads/

57

$ mvn package -P assemble

$ cd ..

3. Copy configuration files to conf directory.

$ cp accumulo-1.5.0/conf/examples/512MB/native-standalone/* \

accumulo-1.5.0/conf

4. Set JAVA_HOME, HADOOP_HOME, and ZOOKEEPER_HOME:

$ vi accumulo-1.5.0/conf/accumulo-env.sh

In particular, any lines featuring these exports should read:

export ZOOKEEPER_HOME=<your path>/zookeeper-3.4.5

export HADOOP_PREFIX=<your path>/hadoop-1.2.1

export JAVA_HOME=<your path, same as above for Hadoop>

test -z "$ACCUMULO_HOME" && \

export ACCUMULO_HOME=<your path>/accumulo-1.5.0

5. Create the directory indicated by the path variable ACCUMULO_LOG_DIR. This path is
defined in the configuration script accumulo-1.5.0/conf/accumulo-env.sh. For
example:

$ mkdir accumulo-1.5.0/logs

6. Accumulo requires the Hadoop “commons-io” java package. This is normally dis-
tributed with Hadoop. It should be located at hadoop-1.2.1/lib/commons-io-2.1.jar.
If your Hadoop distribution does not provide this package, you will need to obtain it
and put the “commons-io” jar file under accumulo-1.5.0/lib.

Starting Accumulo
Use the following steps to start the Accumulo instance, to verify installation.

1. Start Hadoop

$ hadoop-1.2.1/bin/hadoop namenode -format

$ hadoop-1.2.1/bin/start-all.sh

58

2. Verify Hadoop is running by browsing the following web interfaces. If you can
connect to these pages, Hadoop is running:

$ lynx http://localhost:50070/

$ lynx http://localhost:50030/

3. Start Zookeeper

$ zookeeper-3.4.5/bin/zkServer.sh start

4. Verify Zookeeper is running by connecting to the shell

$ zookeeper-3.4.5/bin/zkCli.sh -server 127.0.0.1:2181

You should a command prompt, like:

[zk: 127.0.0.1:2181(CONNECTED) 0]

To exit the shell, type ‘quit’.
5. Initialize Accumulo, to create an instance name and root password.

$ accumulo-1.5.0/bin/accumulo init

6. Start Accumulo

$ accumulo-1.5.0/bin/start-all.sh

7. Verify Accumulo running by browsing:

$ lynx http://localhost:50095/

Alternatively, verify Accumulo running by connecting to the shell:

$ accumulo-1.5.0/bin/accumulo shell -u root

Enter the root password you just created. You should see the prompt

root@accumulo>

Exit the shell by typing ‘quit’.

59

Stopping Accumulo
The following commands can be used to stop the running Accumulo instance:

$ accumulo-1.5.0/bin/stop-all.sh

$ zookeeper-3.4.5/bin/zkServer.sh stop

$ hadoop-1.2.1/bin/stop-all.sh

60

List of References

[1] M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos, N. Hachem, and
P. Helland, “The end of an architectural era: (It’s time for a complete rewrite),” in
Proceedings of the 33rd International Conference on Very Large Data Bases, 2007,
pp. 1150–1160.

[2] D. Harris. (2013, June 7). Under the covers of the NSA’s big data effort. Gigaom.
[Online]. Available:
http://gigaom.com/2013/06/07/under-the-covers-of-the-nsas-big-data-effort/

[3] C. Young. (2012, Mar. 12). Military intelligence redefined: Big data in the
battlefield. Forbes. [Online]. Available: http://www.forbes.com/sites/techonomy/
2012/03/12/military-intelligence-redefined-big-data-in-the-battlefield/

[4] G. Gardner. (2014, Mar. 13). Enabling battlefield big data ‘on the move’. Defense
Systems. [Online]. Available: http://defensesystems.com/articles/2014/03/13/
commentary-gardner-battlefield-big-data.aspx

[5] J. Edwards. (2014, June 2). Military, intel turn to big data for better situational
awareness. FederalTimes. [Online]. Available:
http://www.federaltimes.com/article/20140602/FEDIT/306020009/
Military-intel-turn-big-data-better-situational-awareness

[6] C. Wood. (2014, Jan. 6). How does the military use big data. Emergency
Management. [Online]. Available:
http://www.emergencymgmt.com/safety/Military-Use-Big-Data.html

[7] R. Locker. (2014, Feb. 21). Pentagon seeks ‘big code’ for ‘big data’. MilitaryTimes.
[Online]. Available: http://www.militarytimes.com/article/20140221/NEWS04/
302210019/Pentagon-seeks-big-code-big-data-

[8] Information Innovation Office. (n.d.). Mining and Understanding Software Enclaves
(MUSE). DARPA. [Online]. Available: http://www.darpa.mil/Our_Work/I2O/
Programs/Mining_and_Understanding_Software_Enclaves_(MUSE).aspx

[9] Information Innovation Office. (n.d.). XDATA. DARPA. [Online]. Available:
http://www.darpa.mil/Our_Work/I2O/Programs/XDATA.aspx

[10] “Achieving a naval data strategy: Leveraging the Unified Cloud Data (UCD)
ecosystem as the pathfinder for a Naval data ecosystem,” White Paper, Office of
Naval Research, Code 31 and U.S. Navy TENCAP, Feb. 2014.

61

[11] Couchbase. (2012, Feb. 8). Couchbase survey shows accelerated adoption of NoSQL
in 2012. [Online]. Available: http://www.couchbase.com/press-releases/
couchbase-survey-shows-accelerated-adoption-nosql-2012

[12] C. Strauch, “NoSQL databases,” 2011, unpublished.

[13] A. Lakshman and P. Malik, “Cassandra: Structured storage system on a P2P
network,” in Proceedings of the 28th ACM Symposium on Principles of Distributed
Computing, 2009, p. 5.

[14] E. Lai. (2008, Nov. 24). Google claims MapReduce sets data-sorting record, topping
Yahoo, conventional databases. Computerworld. [Online]. Available:
http://www.computerworld.com/s/article/9121278/Google_claims_MapReduce_
sets_data_sorting_record_topping_Yahoo_conventional_databases

[15] E. A. Brewer, “Towards robust distributed systems,” presented at the Principles of
Distributed Computing, Portland, OR, July 2000.

[16] S. Gilbert and N. Lynch, “Brewer’s conjecture and the feasibility of consistent,
available, partition-tolerant web services,” ACM SIGACT News, vol. 33, no. 2, pp.
51–59, 2002.

[17] A. Moniruzzaman and S. A. Hossain, “NoSQL database: New era of databases for
big data analytics-classification, characteristics and comparison,” International
Journal of Database Theory & Application, vol. 6, no. 4, 2013.

[18] R. Cattell, “Scalable SQL and NoSQL data stores,” ACM SIGMOD Record, vol. 39,
no. 4, pp. 12–27, 2011.

[19] DB-Engines. (2014, Aug.). DB-Engines ranking. [Online]. Available:
http://db-engines.com/en/ranking

[20] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows,
T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A distributed storage system for
structured data,” ACM Transactions on Computer Systems (TOCS), vol. 26, no. 2,
p. 4, 2008.

[21] E. Bertino and R. Sandhu, “Database security-concepts, approaches, and
challenges,” IEEE Transactions on Dependable and Secure Computing, vol. 2, no. 1,
pp. 2–19, Jan.-Mar. 2005.

[22] L. Okman, N. Gal-Oz, Y. Gonen, E. Gudes, and J. Abramov, “Security issues in
NoSQL databases,” in 2011 IEEE 10th International Conference on Trust, Security
and Privacy in Computing and Communications (TrustCom), 2011, pp. 541–547.

62

[23] Cloud Security Alliance Big Data Working Group, “Expanded top ten big data
security and privacy challenges,” White Paper, Apr. 2013. [Online]. Available:
https://downloads.cloudsecurityalliance.org/initiatives/bdwg/Expanded_Top_Ten_
Big_Data_Security_and_Privacy_Challenges.pdf

[24] C. Metz. (2012, July 17). NSA mimics Google, pisses off Senate. Wired. [Online].
Available: http://www.wired.com/2012/07/nsa-accumulo-google-bigtable

[25] J. Kepner, C. Anderson, W. Arcand, D. Bestor, B. Bergeron, C. Byun, M. Hubbell,
P. Michaleas, J. Mullen, D. O’Gwynn et al., “D4M 2.0 schema: A general purpose
high performance schema for the Accumulo database,” in 2013 IEEE High
Performance Extreme Computing Conference (HPEC), 2013, pp. 1–6.

[26] S. M. Sawyer, B. David O’Gwynn, A. Tran, and T. Yu, “Understanding query
performance in Accumulo,” in 2013 IEEE High Performance Extreme Computing
Conference (HPEC), 2013, pp. 1–6.

[27] R. Sen, A. Farris, and P. Guerra, “Benchmarking Apache Accumulo big data
distributed table store using its continuous test suite,” in 2013 IEEE International
Congress on Big Data, 2013, pp. 334–341.

[28] A. Fuchs. (2012, July). Apache Accumulo. National Security Agency. [Online].
Available:
http://www.oss-institute.org/storage/documents/Presentations/project_accumulo.pdf

[29] Apache Accumulo Project. (n.d.). Apache Accumulo user manual version 1.5.
[Online]. Available: http://accumulo.apache.org/1.5/accumulo_user_manual.html

[30] Sqrrl, “Sqrrl enterprise cell-level security,” White Paper, n.d. [Online]. Available:
http://sqrrl.com/media/Cell-Level-Security_FNL.pdf

[31] Oracle. (2014, Mar.). Configuring privilege and role authorization. [Online].
Available:
http://docs.oracle.com/cd/E11882_01/network.112/e36292/authorization.htm

[32] Oracle. (2014, Mar.). Using Oracle virtual private database to control data access.
[Online]. Available:
http://docs.oracle.com/cd/B28359_01/network.111/b28531/vpd.htm

[33] J. Kelly. (2012, Aug. 20). Accumulo: Why the world needs another NoSQL
database. Devops Angle. [Online]. Available: http://devopsangle.com/2012/08/20/
accumulo-why-the-world-needs-another-nosql-database/

63

[34] The Apache Software Foundation. (2013, May). Apache Accumulo source code.
[Online]. Available:
http://archive.apache.org/dist/accumulo/1.5.0/accumulo-1.5.0-src.tar.gz

[35] J. Winick. (2012, Apr.). Trendulo. [Online]. Available:
https://github.com/jaredwinick/Trendulo

[36] Sqrrl. (n.d.).“Sqrrl Enterprise: Unlock the power of big data,” White Paper. [Online].
Available: http://sqrrl.com/media/SQRRL_WP_Final.pdf

[37] Koverse. (2013, Sep.).“Big data and the data lake,” White Paper. [Online]. Available:
http://koverse.com/whitepapers/Big-Data-and-the-Data-Lake-9_2013-.pdf

[38] RedHat. (n.d.). JBossDeveloper. [Online]. Available: http://www.jboss.org

[39] Oracle. (n.d.). Java Persistence API. [Online]. Available:
http://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-140049.html

[40] T. Bray. (2014, Mar.). The JavaScript Object Notation (JSON) data interchange
format. RFC 7159. [Online]. Available: http://tools.ietf.org/html/rfc7159

[41] Koverse. (n.d.). Koverse manual version 1.0. [Online]. Available:
http://koverse.com/downloads/koverse-manual-1.0.0.pdf

[42] J. Jackson. (2013, Oct. 31). NSA’s Accumulo data store has strict limits on who can
see the data. PC World. [Online]. Available: http://www.pcworld.com/article/
2060060/nsas-accumulo-nosql-store-offers-rolebased-data-access.html

[43] OWASP. (2013, July). Top 10 2013. [Online]. Available:
https://www.owasp.org/index.php/Top_10_2013

[44] OWASP. (2014, May). Testing for NoSQL injection. [Online]. Available:
https://www.owasp.org/index.php/Testing_for_NoSQL_injection

[45] Cassandra-user mailing list archives. (2011, July 2). Re: CQL injection attacks?
[Online]. Available: http://mail-archives.apache.org/mod_mbox/cassandra-user/
201107.mbox/%3C1309630640.4e0f60b01d222@itchen.qinetiq.com%3E

[46] Stackoverflow. (2012, Oct. 27). NoSQL injection in Python. [Online]. Available:
http://stackoverflow.com/questions/13099301/nosql-injection-in-python

[47] C. Cornutt. (2012, Dec. 19). SQLi in NoSQL - a word of warning. Websec. [Online].
Available: http://websec.io/2012/12/19/NoSQL-Injection.html

64

[48] SCRT Information Security. (2013, Mar. 24). MongoDB - SSJI to RCE. [Online].
Available: http://blog.scrt.ch/2013/03/24/mongodb-0-day-ssji-to-rce/

[49] J. A. Kreibich. (2012, Feb. 29). [Redis] design: Security. Grokbase. [Online].
Available: http://grokbase.com/p/gg/redis-db/122x99hdew/redis-re-design-security

[50] B. Sullivan, “Server-side JavaScript injection,” White Paper, Adobe, July 2011.
[Online]. Available: http:
//media.blackhat.com/bh-us-11/Sullivan/BH_US_11_Sullivan_Server_Side_WP.pdf

[51] S. Melkote. (2013, Mar. 14). Apache CouchDB traversal arbitrary file access
vulnerability. Securiteam. [Online]. Available:
http://www.securiteam.com/securitynews/5AP37159FI.html

[52] CVE Details. (n.d.). Apache CouchDB security vulnerabilities. [Online]. Available:
http://www.cvedetails.com/vulnerability-list/vendor_id-45/product_id-19046/
Apache-Couchdb.html

[53] J. A. R. Tunney. (2010, Aug. 13). Tokyo Tyrant protocol vulnerability. Lobster
Technologies. [Online]. Available:
https://web.archive.org/web/20130918232852/http:
//lobstertech.com/tokyo_tyrant_security_vulnerability.html

[54] Sqrrl. (n.d.). Accumulo. [Online]. Available: http://sqrrl.com/product/accumulo/

[55] Hortonworks. (n.d.). Apache Accumulo. [Online]. Available:
http://hortonworks.com/hadoop/accumulo/

[56] Department of Defense trusted computer system evaluation criteria, Department of
Defense Std. DoD 5200.28-STD, 1985.

[57] S. Castano, M. G. Fugini, G. Martella, and P. Samarati, Database Security.
Wokingham, England: Addison-Wesley, 1994.

[58] D. E. Denning, “A lattice model of secure information flow,” Communications of the
ACM, vol. 19, no. 5, pp. 236–243, May 1976.

[59] R. Sandhu, “Role hierarchies and constraints for lattice-based access controls,” in
Computer Security—ESORICS 96, 1996, pp. 65–79.

[60] D. E. Bell and L. J. LaPadula, “Secure computer systems: Mathematical
foundations,” MITRE CORP, Bedford, MA, Tech. Rep. MTR-2547-VOL-1, Mar.
1976.

65

[61] A. Cordova. (2012, Aug.). Jaccson. GitHub. [Online]. Available:
https://github.com/acordova/jaccson

[62] Apache Thrift. (2014). Thrift network stack. Apache Software Foundation. [Online].
Available: https://thrift.apache.org/docs/concepts

[63] R. Graubart, “The integrity-lock approach to secure database management,” in 2012
IEEE Symposium on Security and Privacy, 1984, p. 62.

[64] T. D. Nguyen, M. A. Gondree, J. Khosalim, and C. E. Irvine, “Towards a
cross-domain MapReduce framework,” in 2013 IEEE Military Communications
Conference, 2013, pp. 1436–1441.

[65] I. Roy, S. T. Setty, A. Kilzer, V. Shmatikov, and E. Witchel, “Airavat: Security and
privacy for MapReduce,” in Proceedings of the 7th USENIX Conference on
Networked Systems Design and Implementation, vol. 10, 2010, p. 20.

66

Initial Distribution List

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

67

